

sphinx-click

sphinx-click is a Sphinx [http://www.sphinx-doc.org/] plugin that allows you to automatically
extract documentation from a click-based [http://click.pocoo.org/] application and include it in
your docs.

	Installation

	Usage
	.. click::

	Cross-referencing

	Docstring processing

	Example

	Modifying sys.path

	Contribution
	Support

	Reporting Issues

	Submitting Patches

	Testing

	Changes
	5.0.0

	4.4.0

	4.3.0

	4.2.0

	4.1.0

	4.0.3

	4.0.2

	4.0.1

	4.0.0

	Examples
	Documenting commands

	Documenting groups

	Documenting command collections

See also

	Module click
	This extension assumes you are using click to create your command
line application.

	Module sphinxcontrib.autoprogram
	An equivalent library for use with argparse.

Installation

Install the plugin using pip:

$ pip install sphinx-click

Alternatively, install from source by cloning this repo then running pip
locally:

$ pip install .

sphinx-click supports both click [https://pypi.org/project/click/] and asyncclick [https://pypi.org/project/asyncclick/]. If asyncclick is
found, it will be preferred.

Important

Both the package you’re referencing and any dependencies must be
installed.

Usage

To enable the plugin, add the extension to the list of extensions in your
Sphinx conf.py file:

extensions = ['sphinx_click']

Once enabled, sphinx-click enables automatic documentation for
click-based [https://click.palletsprojects.com/en/8.0.x] applications by way of a Sphinx directive [http://www.sphinx-doc.org/en/stable/extdev/markupapi.html].

	
.. click:: module:parser

	Automatically extract documentation from a click-based [https://click.palletsprojects.com/en/8.0.x] application and
include it in your docs.

.. click:: module:parser
 :prog: hello-world
 :nested: full

The directive takes the import name of a click object as its sole
argument. This should be a subclass of click.core.BaseCommand [https://click.palletsprojects.com/en/8.0.x/api/#click.BaseCommand], such as
click.Command, click.Group, click.MultiCommand, etc.

In addition, the following options are required:

	:prog:
	The name of your tool (or how it should appear in your documentation). For
example, if you run your script as ./boo --opts args then :prog:
will be boo. If this is not given, the module name is used.

The following options are optional:

	:nested:
	
Whether subcommands should also be shown. One of:

	full
	List sub-commands with full documentation.

	short
	List sub-commands with short documentation.

	none
	
Do not list sub-commands.

Defaults to short unless show-nested (deprecated) is set.

	:commands:
	Document only listed commands.

	:show-nested:
	This option is deprecated; use nested instead.

The generated documentation includes anchors for the generated commands,
their options and their environment variables using the Sphinx standard
domain [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#the-standard-domain].

Cross-referencing

As discussed above, the documentation generated by sphinx-click includes
anchors for the generated commands, their options and their environment
variables using the Sphinx standard domain [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#the-standard-domain]. Specifically, it uses the
program [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-program], option [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-option], and envvar [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#directive-envvar] directives.

	Options (e.g. --param)
	The option directive can be cross-referenced using the :option: [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-option]
role.

	Environment variables
	The envvar directive can be cross-references using the :ref: [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-ref] role.
sphinx-click generates labels in the format
{command_name}-{param_name}-{envvar}. It is not currently possible to
use the :envvar: [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-envvar] role because the default labels generated by Sphinx
are not namespaced and will generate conflicts if the same environment
variable is used in multiple commands. See issue #26 [https://github.com/click-contrib/sphinx-click/issues/26] for more
information.

	Programs
	Sphinx currently does not allow you to cross-reference programs. See Sphinx
issue #880 [https://github.com/sphinx-doc/sphinx/issues/880] for more information.

Docstring processing

sphinx-click provides the following additional events:

	
sphinx-click-process-description(app, ctx, lines)

	

	
sphinx-click-process-usage(app, ctx, lines)

	

	
sphinx-click-process-options(app, ctx, lines)

	

	
sphinx-click-process-arguments(app, ctx, lines)

	

	
sphinx-click-process-envvars(app, ctx, lines)

	

	
sphinx-click-process-epilog(app, ctx, lines)

	
	Parameters

	
	app – the Sphinx application object

	ctx – the click.Context object used to generate the description

	lines – the lines of the documentation, see below

Events are emitted when sphinx-click has read and processed part of a
command’s documentation. lines is a list of strings – the lines of the
documentation that was processed – that the event handler can
modify in place to change what Sphinx puts into the output.

def process_description(app, ctx, lines):
 """Append some text to the "example" command description."""
 if ctx.command.name == "example":
 lines.extend(["Hello, World!", ""])

def setup(app):
 app.connect("sphinx-click-process-description", process_description)

Example

Take the below click application, which is defined in the hello_world
module:

import click

@click.group()
def greet():
 """A sample command group."""
 pass

@greet.command()
@click.argument('user', envvar='USER')
def hello(user):
 """Greet a user."""
 click.echo('Hello %s' % user)

@greet.command()
def world():
 """Greet the world."""
 click.echo('Hello world!')

To document this, use the following:

.. click:: hello_world:greet
 :prog: hello-world

By default, the subcommand, hello, is listed but no documentation provided.
If you wish to include full documentation for the subcommand in the output,
configure the nested flag to full.

.. click:: hello_world:greet
 :prog: hello-world
 :nested: full

Note

The nested flag replaces the deprecated show-nested flag.

Conversely, if you do not wish to list these subcommands or wish to handle them
separately, configure the nested flag to none.

.. click:: hello_world:greet
 :prog: hello-world
 :nested: none

You can also document only selected commands by using :commands: option.

.. click:: hello_world:greet
 :prog: hello-world
 :commands: hello

You can cross-reference the commands, option and environment variables using
the roles provided by the Sphinx standard domain [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#the-standard-domain]. See
Cross-referencing for more information.

.. click:: hello_world:greet
 :prog: hello-world

The :program:`hello` command accepts a :option:`user` argument. If this is
not provided, the :envvar:`USER` environment variable will be used.

Note

Cross-referencing using the :program: directive is not currently
supported by Sphinx. Refer to the Sphinx issue [https://github.com/sphinx-doc/sphinx/issues/880] for more information.

Documenting CommandCollection [https://click.palletsprojects.com/en/7.x/api/#click.CommandCollection]

When building more complex CLI, one might need to bring together multiple groups
of commands and make them accessible using a single client with CommandCollection [https://click.palletsprojects.com/en/7.x/api/#click.CommandCollection].
sphinx-click renders collection of commands with multiple sections, one for each
group listed in the command sources. The group names are used as section titles
and the help string from the description are used as section description.
Thus, a client defined using a CommandCollection as cli can be rendered
using sphinx-click and the following directive:

.. click:: cli:cli
 :prog: cli
 :nested: full

This will render the subcommands of each group in different sections, one for each
group in sources. An example is provided in Documenting command collections.

Modifying sys.path

If the application or script you wish to document is not installed (i.e. you
have not installed it with pip or run python setup.py), then you may need
to modify sys.path. For example, given the following application:

git
 |- git
 | |- __init__.py
 | \- git.py
 \- docs
 |- git.rst
 |- index.rst
 \- conf.py

then it would be necessary to add the following to git/docs/conf.py:

import os
import sys
sys.path.insert(0, os.path.abspath('..'))

Once done, you could include the following in git/docs/git.rst to document
the application:

.. click:: git.git:cli
 :prog: git
 :nested: full

assuming the group or command in git.git is named cli.

Refer to issue #2 [https://github.com/click-contrib/sphinx-click/issues/2]
for more information.

Contribution

We welcome all contributions to sphinx-click.

Support

Open and issue in the issue tracker [https://github.com/click-contrib/sphinx-click/issues] for all support requests.
StackOverflow [https://stackoverflow.com] is also worth considering.

Reporting Issues

Report all issues in the issue tracker [https://github.com/click-contrib/sphinx-click/issues]. When doing so, please include
version information for:

	Python

	click

	sphinx-click

Submitting Patches

All patches should be submitted as pull requests on the GitHub project [https://github.com/click-contrib/sphinx-click].

	Include tests if fixing a bug

	Clearly explain what you’re trying to accomplish

	Follow PEP 8 [https://peps.python.org/pep-0008/]. You can use the pep8 tox target for this

Testing

sphinx-click uses tox and unittest for testing. To run all tests, run:

$ tox

We support a number of Python versions. To list available environments, run:

$ tox --list

To run one of these environments, such as py27 which runs tests under Python
2.7, run:

$ tox -e py27

Changes

	Fix compatibility with Sphinx 7.2.x

5.0.0

	Add release note for events support

	Process events (#126)

	Add release note for end of Python 3.7 support

	setup.cfg: Add click keyword

	Drop Python 3.7 support

	tox: Use pre-commit for ‘style’ target

	mypy: Follow imports

	pre-commit: Enable black

	pre-commit: Version bumps

	examples: Add typing info

	Typo

4.4.0

	Add release note for Python 3.11 support

	actions: Test Python 3.11

	Points to alternative to complement Click-based CLI documentation

	Add Sphinx extension classifier

	Add pull request template

	Trivial setup.py, setup.cfg changes

	Render option defaults as literals

	Change target Python version used for black

	actions: Update to latest versions of actions

	Use deep clone for GitHub actions

	docs: Add more examples

	tests: Add more application tests

	Add our first “extension” test

	Switch to pytest for testing

	Run mypy as part of CI job

4.3.0

	Fix typo

	Add release note for auto_envvar_prefix support

	add functionality to also render env-variables that are created via the ‘auto_envvar_prefix’ option

4.2.0

	Extend pre-wrapped text support to options

	tests: Use Command tests, not Group tests

	tests: Add test for boolean options

4.1.0

	docs: Don’t recommend using ‘setup.py’

	docs: Indicate support for asyncclick

	asyncclick target

	docs: Remove ‘language’ configuration

	docs: Add root directory to PATH for docs build

	docs: Remove noise from conf.py

	tox: Enable nitpicky mode for docs builds

4.0.3

	Correct ‘get_command’ argument type error

4.0.2

	Correctly ignore empty ‘commands’ parameter

4.0.1

	docs: Correct typo

	Configure mypy

	Add typing hints

	Pass Context, not self, to MultiCommand

	Add test for truncation

4.0.0

	Add Python 3.10 support, drop Python 3.6 support

	Uncap coverage, remove test-requirements.txt

	Update pre-commit hooks

Examples

	Documenting commands

	Documenting groups

	Documenting command collections

Documenting commands

Consider the following sample application, using Command [https://click.palletsprojects.com/en/7.x/api/#click.Command]:

file: cli.py
import click

@click.command()
@click.option('--param', envvar='PARAM', help='A sample option')
@click.option('--another', metavar='[FOO]', help='Another option')
@click.option(
 '--choice',
 help='A sample option with choices',
 type=click.Choice(['Option1', 'Option2']),
)
@click.option(
 '--numeric-choice',
 metavar='<choice>',
 help='A sample option with numeric choices',
 type=click.Choice([1, 2, 3]),
)
@click.option(
 '--flag',
 is_flag=True,
 help='A boolean flag',
)
@click.argument('ARG', envvar='ARG')
def cli(
 param: str,
 another: str,
 choice: str,
 numeric_choice: int,
 flag: bool,
) -> None:
 """A sample command."""
 pass

This can be documented using sphinx-click like so:

.. click:: commands.cli:cli
 :prog: cli
 :nested: full

The rendered example is shown below.

cli

A sample command.

cli [OPTIONS] ARG

Options

	
--param <param>

	A sample option

	
--another <FOO>

	Another option

	
--choice <choice>

	A sample option with choices

	Options

	Option1 | Option2

	
--numeric-choice <choice>

	A sample option with numeric choices

	Options

	1 | 2 | 3

	
--flag

	A boolean flag

Arguments

	
ARG

	Required argument

Environment variables

	
PARAM

	
Provide a default for --param

	
ARG

	
Provide a default for ARG

Documenting groups

Consider the following sample application, using Groups [https://click.palletsprojects.com/en/7.x/api/#click.Group]:

file: cli.py
import click

@click.group()
@click.option(
 '--debug',
 default=False,
 is_flag=True,
 help="Output more information about what's going on.",
)
def cli(debug: bool) -> None:
 """A sample command group."""
 pass

@cli.command()
@click.option('--param', envvar='PARAM', help='A sample option')
@click.option('--another', metavar='[FOO]', help='Another option')
def hello(param: str, another: str) -> None:
 """A sample command."""
 pass

This can be documented using sphinx-click like so:

.. click:: groups.cli:cli
 :prog: cli
 :nested: full

The rendered example is shown below.

cli

A sample command group.

cli [OPTIONS] COMMAND [ARGS]...

Options

	
--debug

	Output more information about what’s going on.

hello

A sample command.

cli hello [OPTIONS]

Options

	
--param <param>

	A sample option

	
--another <FOO>

	Another option

Environment variables

	
PARAM

	
Provide a default for --param

Documenting command collections

Consider the following sample application, using CommandCollection [https://click.palletsprojects.com/en/7.x/api/#click.CommandCollection]:

file: cli.py
import click

main = click.Group(
 name='Principal Commands',
 help=(
 "Principal commands that are used in ``cli``.\n\n"
 "The section name and description are obtained using the name and "
 "description of the group passed as sources for |CommandCollection|_."
),
)

@main.command(help='CMD 1')
def cmd1() -> None:
 print('call cmd 1')

helpers = click.Group(
 name='Helper Commands',
 help="Helper commands for ``cli``.",
)

@helpers.command()
def cmd2() -> None:
 "Helper command that has no option."
 pass

@helpers.command()
@click.option('--user', type=str)
def cmd3(user: str) -> None:
 "Helper command with an option."
 pass

cli = click.CommandCollection(
 name='cli',
 sources=[main, helpers],
 help='Some general info on ``cli``.',
)

This can be documented using sphinx-click like so:

.. click:: commandcollections.cli:cli
 :prog: cli
 :nested: full

The rendered example is shown below.

cli

Some general info on cli.

cli [OPTIONS] COMMAND [ARGS]...

Principal Commands

Principal commands that are used in cli.

The section name and description are obtained using the name and description of the group passed as sources for CommandCollection [https://click.palletsprojects.com/en/7.x/api/#click.CommandCollection].

cmd1

CMD 1

cli cmd1 [OPTIONS]

Helper Commands

Helper commands for cli.

cmd2

Helper command that has no option.

cli cmd2 [OPTIONS]

cmd3

Helper command with an option.

cli cmd3 [OPTIONS]

Options

	
--user <user>

	

Index

 Symbols
 | A
 | C
 | P

Symbols

 	
 	
 --another

 	cli command line option

 	cli-hello command line option

 	
 --choice

 	cli command line option

 	
 --debug

 	cli command line option

 	
 --flag

 	cli command line option

 	
 	
 --numeric-choice

 	cli command line option

 	
 --param

 	cli command line option

 	cli-hello command line option

 	
 --user

 	cli-cmd3 command line option

A

 	
 	
 ARG

 	cli command line option

C

 	
 	
 cli command line option

 	--another

 	--choice

 	--debug

 	--flag

 	--numeric-choice

 	--param

 	ARG

 	
 	
 cli-cmd3 command line option

 	--user

 	
 cli-hello command line option

 	--another

 	--param

 	click (directive)

P

 	
 	
 Python Enhancement Proposals

 	PEP 8

 nav.xhtml

 Table of Contents

 		
 sphinx-click

 		
 Installation

 		
 Usage

 		
 .. click::

 		
 Cross-referencing

 		
 Docstring processing

 		
 Example

 		
 Documenting CommandCollection

 		
 Modifying sys.path

 		
 Contribution

 		
 Support

 		
 Reporting Issues

 		
 Submitting Patches

 		
 Testing

 		
 Changes

 		
 5.0.0

 		
 4.4.0

 		
 4.3.0

 		
 4.2.0

 		
 4.1.0

 		
 4.0.3

 		
 4.0.2

 		
 4.0.1

 		
 4.0.0

 		
 Examples

 		
 Documenting commands

 		
 cli

 		
 Documenting groups

 		
 cli

 		
 Documenting command collections

 		
 cli

_static/plus.png

_static/file.png

_static/minus.png

